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Session-based
Recommendation
Systems
Being able to recommend an item of interest to a user, based on their past
preferences, is a highly relevant problem in practice. A key trend over the past
few years has been session-based recommendation algorithms that provide
recommendations solely based on the user’s interactions in an ongoing session,
and which do not require the existence of user profiles or their entire historical
preferences. This report explores a simple, yet powerful, NLP-based approach
(word2vec) to recommend the next item to a user. While NLP-based approaches
are generally employed for linguistic tasks, here we exploit them to learn the
structure induced by the user’s behavior or the item’s nature.



Recommendation systems have become a cornerstone of modern life, spanning
sectors that include online retail, music and video streaming, and even content
publishing. These systems help us navigate the sheer volume of content on the
internet, allowing us to discover what’s interesting or important to us. When
implemented correctly, recommendation systems help us navigate efficiently
and make more informed decisions.

While this report is not comprehensive, we will touch on a variety of approaches
to recommendation systems, and dig deep into one approach in particular. We’ll
demonstrate how we used that approach to build a recommendation system
from the ground up for an e-commerce use case, and showcase our
experimental findings. Finally, we’ll also talk about many of the considerations
necessary to building thoughtful, information-driven recommendation systems.

Introduction

Figure 1: The sheer amount of items available online make recommendation

systems necessary



Session-Based Recommendation
Systems
Recommendation systems are not new, and they have already achieved great
success over the past ten years through a variety of approaches. These classic
recommendation systems can be broadly categorized as content-based, as
collaborative filtering-based, or as hybrid approaches that combine aspects of
the two.

At a high level, content-based filtering makes recommendations based on user
preferences for product features, as identified through either the user’s previous
actions or explicit feedback. Collaborative filtering, on the other hand, utilizes
user-item interactions across a population of users in order to make
recommendations for one particular user, based on the preferences of other,
very similar users (where similar users are identified by the items they have
liked, read, bought, watched, etc.). These systems generally tend to utilize
historical user-item interactions (i.e., the items that a user has clicked on in the
past) to learn a user’s long-term preferences.

Figure 2: content-based vs collaborative filtering approaches



The underlying assumption in both of these systems is that all of the historical
interactions are equally important to the user’s current preference—but in
reality, this may not be true. A user’s choice of items not only depends not only
on long-term historical preference, but also on short-term and more recent
preferences.

Choices almost always have time-sensitive context; for instance, “recently
viewed” or “recently purchased” items may actually be more relevant than
others. These short-term preferences are embedded in the user’s most recent
interactions, but may account for only a small proportion of historical
interactions. In addition, a user’s preference towards certain items can tend to
be dynamic rather than static; it often evolves over time.

These considerations have prompted the exploration and development of a new
type of recommendation system: known as session-based recommendation
systems, these systems rely heavily on the user’s most recent interactions,
rather than on the user’s historical preferences. This is especially advantageous
because a user could appear anonymously—that is, a user may not be logged in
or may be browsing incognito.

Figure 3: A user’s preference can change over time



Why now?
While nearly unknown as of just a few years ago, session-based recommenders
have grown quickly in popularity, and for several reasons. First, this method can
be implemented even in the absence of historical user data, and doesn’t
explicitly rely on user population statistics. This is helpful because users aren’t
always logged in when they browse a website, which makes session-based

recommenders highly relevant.[1]

Second, a wealth of new, publicly available, session-centric datasets have been
released, especially in the e-commerce domain, allowing for model
development and research in this area.

Third, session-based recommenders have benefited from the rise of deep
learning approaches expressly suited for sequences (more on this in Modeling
Session-based Recommenders, below).



Let’s say we own a popular online shopping website for workout accessories.
Rhonda, a new customer, has been browsing tops, shoes, and weights. Her
browsing history looks like this:

What should we recommend to her next? Good recommendations increase the
likelihood that Rhonda will see something she likes, click on it, and make a
purchase. Poor recommendations will, at best, lead to no new revenue, but,
even worse, could give her a negative customer experience. (You know this
feeling: when a website keeps recommending something to you that you have

Defining the Session-based
Recommender Problem
Space

Figure 4: Rhonda’s browsing history



already bought, or something that you’ve never really wanted, your impression
of that website diminishes!)

We’ll consider Rhonda’s recent browsing history as a “session.” Formally, a
session is composed of multiple user interactions that happen together in a
continuous period of time—for instance, products purchased in a single
transaction. Sessions can occur on the same day, or across several days, weeks,
or months.

Our goal is to predict the product within Rhonda’s session that she will like
enough to click on. This task is called next event prediction (NEP): given a
series of events (Rhonda’s browsing history), we want to predict the next event
(Rhonda clicking on a product we recommend to her).

In reality, this means that our model might generate a handful of
recommendations based on Rhonda’s browsing history; we want to maximize
the likelihood that Rhonda clicks on at least one of them. To train a model for
this task, we’ll need to use historical browsing sessions from our other existing
users to identify trends between products that will help us learn
recommendations.

Figure 5: Historical browsing sessions of various lengths



Use Cases
This problem is well-aligned with emerging real-world use cases, in which
modeling short-term preferences is highly desirable. Consider the following

examples in music, rental, and product spaces.[2]

Music recommendations
Recommending additional content that a user might like while they browse
through a list of songs can change a user’s experience on a content platform.

The user’s listening queue follows a sequence. For each song the user has
listened to in the past, we would want to identify the songs listened to directly
before and after it, and use them to teach the machine learning model that
those songs somehow belong to the same context. This allows us to find songs

that are similar, and provide better recommendations.[3]

Rental recommendations

Figure 6: Playlist



Another powerful and useful application of session-based recommendation
systems occurs in any type of online marketplace. For example, imagine a
website that contains millions of diverse rental listings, and a guest exploring

them in search of a place to rent for a vacation.[4] The machine learning model in
such a situation should be able to leverage what the guest views during an
ongoing search, and learn from these search sessions the similarities between
the listings. The similarities learned by the model could potentially encode
listing features, like location, price, amenities, design taste, and architecture.

Product recommendations
Leveraging emails in the forms of promotions and purchase receipts to
recommend the next item to be purchased has also proven to be a strong

purchase intent signal.[5] Again, the idea here is to learn a representation of
products from historical sequences of product purchases, under the assumption
that products with similar contexts (that is, surrounding purchases) can help
recommend more meaningful and diverse suggestions for the next product a
user might want to purchase.

Figure 7: Rental listings



With these examples in mind, let’s dig deeper into what it takes to design and
build a session-based recommendation system for product recommendations,
in the context of an online retail website

Figure 8: Email purchase receipts



There are many baselines for the next event prediction (NEP) task. The simplest
and most common are designed to recommend the item that most frequently

co-occurs with the last item in the session. Known as “Association Rules,”[6] this
heuristic is straightforward, but doesn’t capture the complexity of the user’s
session history.

More recently, deep learning approaches have begun to make waves. Variations

of graph neural networks[7] and recurrent neural networks[8] have been applied
to the problem with promising results, and currently represent the state of the
art in NEP for several use cases. However, while these algorithms capture
complexity, they can also be difficult to understand, and unintuitive in their
recommendations.

There is still another option, though, that sits between simple heuristics and
deep learning algorithms. It’s a model that can capture semantic complexity
with only a single layer: word2vec.

Treating it as a NLP problem
Word2vec? Isn’t that the algorithm that made word embeddings commonplace?
Yes! Word2vec uses the co-occurrence of words in a sentence to learn
embeddings for each word that capture the semantic meaning of that word. At
its core, word2vec is a simple, shallow neural network, with a single hidden
layer. In its skip-gram version, it takes as input a word, and tries to predict the
context of words around it as the output. For instance, consider this sentence:

“The cat jumped over the puddle.”[9]

Given the central word “jumped,” the model will be able to predict the
surrounding words: “The,” “cat,” “over,” “the,” “puddle.”

Modeling Session-based
Recommenders



Another approach—Continuous Bag of Words (CBOW)—treats the words “The,”
“cat,” “over,” “the,” and “puddle” as the context, and predicts the center word:
“jumped.” For the rest of this report, we will restrict ourselves to the skip-gram
model. The Ws in the above diagram represent the weight matrices that control
the weight of the successive transformations we apply to the input to get the
output. Training this shallow network means learning the values of these weight
matrices, which gives us the output that is closest to the training data. Once
trained, the output layer is usually discarded, and the hidden layer (also known
as the embeddings) is used for downstream processes. These embeddings are
nothing but vector representations of each word, such that similar words have
vector representations that are close together in the embedding space.

How can we use this for NEP?
Let’s take another look at Rhonda’s browsing history. We can treat each session
as a sentence, with each item or product in the session representing a “word.” A
website’s collection of user browser histories (including Rhonda’s) will act as the
corpus. Word2vec will crunch over the entire corpus, learning relationships
between products in the context of user browsing behavior. The result will be a
collection of embeddings: one for each product. The idea is that these learned

Figure 9: Word2vec versions: Skip-Gram vs Continuous Bag of Words



product embeddings will contain more information than a simple heuristic, and
training the word2vec algorithm is typically faster and easier than training more
complex, data-hungry deep learning algorithms.

In fact, word2vec can be invoked as a reasonable approach any time we’re faced
with a problem that is sequential in nature, and where the order of the
sequences contains information. In this case, casting sessions as an NLP
problem makes sense because we do have sequential data (user browser
histories are typically ordered by time) and the order likely does matter
(capturing the user’s interests as they navigate various products). While the
basic algorithm can conceptually be applied to other domains, only recently has

research explored this explicitly for the NEP task.[10] [11]



Evaluation of session-based recommendation systems typically comes in two
stages: offline and online evaluation. In offline evaluation, the historical user
sessions are typically considered as the “gold standard” for the evaluation. The
effectiveness of an algorithm is measured by its ability to predict items withheld

from the session. There are a variety of withholding strategies:[12]

1. withholding the last element of each session,
2. iteratively revealing each interaction in a session, and
3. in cases where each user has multiple sessions, withholding the entire

final session.

For the purposes of this research report, we have employed withholding the last
element of the session. That said, while it is a conceptually simple approach, it
may not reflect the user journey throughout a session in the best way. Also,
using word2vec for the NEP recommendation task means we are evaluating the
embeddings generated by the word2vec model to measure the performance. So,
if an item hasn’t been part of the training set, one may have to come up with
alternative ways of generating the embedding. (Refer to Cold Start in
Experiments for more details.)

Evaluation metrics
When looking at time-ordered sequences of user interactions with the items, we
split each sequence into train, validation, and test sets. For a sequence
containing n interactions, we use the first (n-1) items in that sequence as part of
the model training set. We randomly sample (n-1th, nth) pairs from these
sequences for the validation and test sets. For prediction, we use the last item in
the training sequence (the n-1th item) as the query item, and predict the K
closest items to the query item using cosine similarity between the vector
representations. We can then evaluate with the following metrics:

Evaluating Session-based
Recommenders



Recall at K (Recall@K) defined as the proportion of cases in which the
ground truth item is among the top K recommendations for all test cases
(that is, a test example is assigned a score of 1 if the nth item appears in the
list, and 0 otherwise.)

Mean Reciprocal Rank (MRR@K), takes average on the reciprocal ranks of
users’ desired items. This metric measures and favors higher ranks in the
ordered list of recommendation results

Accuracy, however, is not the only relevant factor when it comes to
recommendations. Depending on the problem, we may want to measure how
diverse the recommendations are, or if our algorithm generally tends to
recommend most popular items. These additional quality metrics, known as
coverage (or diversity) and popularity bias, could help us better understand the
potential side-effects of the recommender model.



Let’s put this into practice, and see how to specifically use word2vec for next
event prediction (NEP) in order to generate product recommendations. In
keeping with our e-commerce example above (Rhonda’s online shopping), we’ve
chosen an open source e-commerce dataset that lends itself well to this task.
The discussion below details our strategy, experiments, and results—the code

for which can be found on our GitHub repo.[13]

Data
We chose an open domain e-commerce dataset[14] from a UK-based online
boutique selling specialty gifts. This dataset was collected between 12/01/2010
and 12/09/2011 and contains purchase histories for 4,372 customers and
3,684 unique products. These purchase histories record transactions for each
customer and detail the items that were purchased in each transaction. This is a
bit different from a browsing history, as it does not contain the order of items
clicked while perusing the website; it only includes the items that were
eventually purchased in each transaction. However, the transactions are ordered
in time, so we can treat a customer’s full transaction history as a session.
Instead of predicting recommendations for what a customer might click on next,
we’ll be predicting recommendations for what that customer might actually buy
next. Session definitions are flexible, and care must be taken in order to properly
interpret the results (more on this in Overall Considerations.

In this case, we define a session as a customer’s full purchase history (all items
purchased in each transaction) over the life of the dataset. Below, we show a
boxplot of the session lengths (how many items were purchased by each
customer). The median customer purchased 44 products over the course of the
dataset, while the average customer purchased 96 products.

Experiments



Another thing to note is the popularity of individual products. Below, we show
the log counts of how often each product was purchased. Most products are not
very popular and are only purchased a handful of times. On the other hand, a
few products are wildly popular and purchased thousands of times.

Figure 10: Session length in the Online Retail Data Set



This dataset has already been preprocessed (e.g., personally identifying
information has already been removed.) The only additional preprocessing we
performed was to remove entries that did not contain a customer ID number
(which is how we define a session).

Setup
In NEP, we consider a user’s history to recommend items for the future—but,
when training models for recommendation, all the data is historical. In order to
mimic “real life” behavior, we’ll pretend that we only have access to the user’s
first n-1 purchased items, and use those to try to predict the nth item
purchased.

To visualize this, let’s go back to Rhonda’s historical browsing information,
collected while she was using our site. We’ll use the highlighted items as our
training set to learn product representations, which will be used to generate
recommendations. Recommendations are typically based on the most recent
interaction by the user, called the query item. In this case, we’ll treat the last

Figure 11: Log counts of each product in the Online Retail dataset



item (“cap” in our highlighted set of items below) as the query item, and use that
to generate a set of recommendations.

The item outside of the highlighted box (in this case, a “water bottle”) will be the
ground truth item, and we’ll then check whether this item is contained within
our generated recommendations.

To put it more concretely: for each customer in the Online Retail Data Set, we
construct the training set from the first n-1 purchased items. We construct test
and validation sets as a series of [query item, ground truth item] pairs. The test
and validation sets must be disjoint—that is, each set is composed of pairs with
no pairs shared between the two sets (or else we would leak information from
our validation into the final test set!).

With this in mind, there is one more preprocessing step that we must apply to
our dataset. Namely, we remove sessions that contain fewer than three
purchased items. A session with only two, for example, is just a [query item,
ground truth item] pair and does not give us any examples for training.

Figure 12: Rhonda’s session, wherein the first n-1 items highlighted in

a green box act as part of the training set, while the item outside is

used as ground truth for the recommendations generated.



Once we have our train/test/validation sets constructed, it’s time to train!
Training Gensim’s word2vec is a one-liner. (For the uninitiated, Gensim is an
open-source natural language processing library for training vector
embeddings.) We simply pass it the training set and two very important
parameters: min_count  and sg . min_count  is the minimum number of times
a word in the vocabulary must be present for word2vec to create an embedding
for it. Because we have some rare products, we set this to 1, so that all product
IDs in the training set have an embedding. ( sg  is short for skip-gram, and
setting this equal to 1 causes word2vec to use this architecture, as opposed to
CBOW.)

Under the hood, word2vec will construct a “vocabulary,” a collection of all
unique product IDs, and then learn an embedding for each. Once trained, we
can extract the product ID embeddings.

[missing code snippet]

Next, we need to generate recommendations. Given a query item, we’ll generate
a handful of recommendations that are the most similar to that item, using
cosine similarity. This is the same technique we would use if we wanted to find
similar words. Instead of semantic similarity between words, we hope we have
learned embeddings that capture the semantic similarity between product IDs
that users purchased. Thus, we’ll look for other product IDs that are “most
similar” to the query item.

https://radimrehurek.com/gensim/


Armed with a list of recommendations, we can now score our model by checking
whether the corresponding ground truth item is in our list of recommendations.

Figure 13: The query item (the last item in a training sequence) is used

to generate K product recommendations



We’ll perform this set of operations for each [query item, ground truth item] pair
in our test set, to compute an overall score using Recall@K and MRR@K. The
output of the code snippet above resulted in a Recall@10 of 19.7 and MRR@10
of 0.108. These results tell us that nearly 20% of the time, the user’s true
selection was included in the list of recommendations we generated, and that its
rank in that list was, on average, about 9th out of 10 recommendations. (1/x =
0.108 → x = 9.25)

Hyperparameters Matter
In the previous section, we simply trained word2vec using the default
hyperparameters. But hyperparameters matter! In addition to the learning rate
or the embedding size— hyperparameters likely familiar to many—word2vec has
several others which have considerable impact on the resulting embeddings.
Let’s see how.

Context window size

Figure 14: The user’s actual next selection (the final item in the

user’s sequence) is considered the ground truth item, and we check

whether that item is found in our list of generated recommendations.



The window size controls the size of the context. Recall our earlier example:
“The cat jumped over the puddle.” If the context size were set to 6, the entire
sentence would be contained within the context window. If we set it to 5, then
this sentence would be broken up, and we would instead consider a context like:
“The cat jumped over the.” Thus, the context window influences how far apart
words can be while still being considered in the same context.

Negative sampling exponent
Word2vec’s training objective is to find word representations that are useful for
predicting the surrounding words in the context, by maximizing the average log

probability over all possible words.[15] This probability is modeled with the
softmax function. Computing the softmax scales with the size of the vocabulary,
as such, can become computationally expensive. However, we can approximate
the softmax through a technique known as “negative sampling.” In this
technique, the model must try to discern between a word that is truly in the
context from words that are not part of the context.

Negative samples are chosen from all the other possible words in the corpus
based on the frequency distribution of words in that corpus. This frequency
distribution is controlled by a hyperparameter called the negative sampling
exponent. When this value is 1, common words are more likely to be chosen as
negative samples (think stopwords like “the”, “it”, “and”). If the value is 0, then
each word is equally likely to be chosen as a negative example (this is a uniform
distribution where “the” is just as likely as “cordial”). Finally, if the value is -1,
then rare words are more likely to be selected as negative examples.

So, we will train the model to positively identify words belonging to the same
context by presenting it with pairs, like [“jumped”, “the”], [“jumped”, “cat”], etc.
These are positive examples because “the” and “cat” both appear in the same
context as “jumped.” In negative sampling, we will also try to train the model to
identify words that are not in the context, by presenting examples like
[“jumped”, “airplane”] or [“jumped”, “cordial”]. (These are negative examples
because “airplane” and “cordial” are not in the same context as “jumped.”)

Number of negative samples
In addition to the negative sampling exponent, another hyperparameter
determines how many negative samples are provided for each positive
example. That is, when showing the model [“jumped”, “cat”] (our positive



sample), we could include one, five, or maybe even fifty different negative
samples.

The code snippet displayed above uses the default values for each of these
hyperparameters. These values were found to produce semantically meaningful
representations for words in documents, but we are learning embeddings for
products in online sessions. The order of products in online sessions will not
have the same structure as words in sentences, so we’ll need to consider
adjusting word2vec’s hyperparameters to be more appropriate to the task.

Hyperparameter Start Value End Value Step Size Configurations

Context window size 1 19 3 7

Negative sampling exponent -1 1 0.2 11

Number of negative samples 1 19 3 7

Number of Trials 539

#####[Table 1: This table shows the main hyperpar ameters we tuned over.
For each one, we show the starting and ending values we tried, along with the
step size we used. The total number of trials is computed by multiplying each
value in the Configurations column.]

Above, we detail the hyperparameters we considered, the values we allowed
these hyperparameters to assume, and the total number of trials necessary to
test them all in a sweep. If we want to find the best hyperparameters for our
dataset, we’ll need to do quite a bit of training—more than 500 different
hyperparameter combinations! We could set up our own code, constructing
several nested loops to cover all of the possible parameters—or perhaps we
could use sklearn’s GridSearch. However, there’s an even better solution.

Hyperparameter Tuning with Ray
There are several libraries that make hyperparameter optimization
approachable, easy, and scalable—three things you won’t get by rolling your own
or using sklearn’s GridSearch. For this cycle, we explored Ray.

At its core, Ray is a simple, universal API for building distributed applications.
Atop this foundation are a handful of libraries designed to address specific
machine learning challenges. Ray Tune provides several desirable features,
including distributed hyperparameter sweep, checkpointing, and state-of-the-
art hyperparameter search algorithms—all while supporting most major ML
frameworks, such as PyTorch, Tensorflow and Keras.

https://docs.ray.io/en/master/index.html
https://docs.ray.io/en/master/tune/index.html


In our experiments, we tuned over the hyperparameters in the table above for
the number of trials specified. Each trial was trained for 100 epochs and was
evaluated on the validation set using Recall@10. This resulted in the best
hyperparameter configuration for the Online Retail Data Set.

Results
We trained a word2vec model using the best hyperparameters found above,
which resulted in a Recall@10 score of 25.18±0.19 on the validation set, and
25.21±.26 for the test set. These scores may not seem immediately impressive,
but if we consider that there are more than 3600 different products to
recommend, this is far better than random chance!

Hyperparameter Optimization Results
For this dataset, there is actually a wide range of values that would work well for
this task. In the following figures, we plot the Recall@10 score for each
hyperparameter configuration we tested. Because we tuned over three
hyperparameters, we display three figures showing the relationship between
pairs of hyperparameters. Essentially, we’ve flattened a 3D space into two
dimensions for readability. This means that, for the flattened dimension, we
averaged over the Recall@10 scores. For example, in the left-most figure we
plot the number of negative samples against the negative sampling exponent. We
average over the Recall@10 scores in the context window dimension, which are
the colored points you see in the 2D figure, where yellow indicates a high
Recall@10 score and purple is a low score.



In each figure above, the orange star signifies the default word2vec values, and
the light blue circle indicates the best hyperparameter configuration we found
during our sweep. In all cases, the best hyperparameters are typically in the
upper right quadrant; larger values of these hyperparameters perform better
than smaller values for this dataset. And in each case, the default word2vec
parameters are near, but outside of, the optimal range of values to maximise
performance on Recall@10.

We also find a few other items of note. First is the size of the context window. In
the middle figure, we see that many values of context window size (y axis) will
work pretty well, so long as it’s larger than one. (Note the bottom row of this
figure is quite purple, indicating very low relative scores). When the context
window is too small, the model is unable to learn relationships between product
IDs, and thus recommendations (and our Recall@10 score) suffer. Context
matters!

Second is the number of negative samples. In the figure to the far right, we see
that more negative samples lead to much better Recall@10 scores. When we
select only a single negative example for each positive example, the model
again struggles. It is crucial to provide the model with sufficient negative
examples. The model must learn not only what things should be in the same
context, but especially what things should not be in the same context.

Figure 15: Results from our hyperparameter sweep: Each panel shows the

Recall@10 scores (colored points, where yellow is a high score, and

purple is a low score) associated with a unique configuration of

hyperparameters. The best hyperparameter values for the Online Retail

Data Set are denoted by the light blue circle. Word2vec’s default values

are shown by the orange star. In all cases, the orange star is nowhere

near the light blue circle, indicating that the default values are not

optimal for this dataset.



Model Comparisons
Now that we’ve learned the best hyperparameters for our dataset, we can start
looking at some model comparisons. We trained models using both our best
hyperparameters and the default hyperparameters, each for 100 epochs. The
number of epochs is another important parameter, and the default in Gensim’s
implementation is five. So we trained another default word2vec model with only
five epochs. Finally, we’ve shown the “Association Rules” baseline, a simple
heuristic that predicts recommendations based on frequent co-occurrence
between items.

It should be no surprise that the best model is the one configured with the
hyperparameters discovered during the tuning sweep—but it turns out the
number of training epochs is just as crucial.

We can see the relative contribution of this parameter in Figure 16. The blue bar
is the Recall@10 score for a word2vec model trained with all default values,
including Gensim’s default of only five epochs of training. The orange bar is the

Figure 16: Model comparisons



same model trained for 100 epochs. This indicates that simply training
word2vec for more epochs can give you a big boost in performance, without
doing any hyperparameter sweep at all. But if we train for too many epochs,
shouldn’t we be worried about overfitting? Not with word2vec.

With traditional neural networks, we set the number of epochs to minimize the
training loss (and increase learning) without overfitting (typically indicated by an
increase in the validation loss). However, word2vec is different. We do not care
necessarily about the training loss because the goal is to learn embeddings for a
downstream task. In this sense, it might not actually matter if the model overfits
the training data, so long as the resulting embeddings increase performance on
the downstream task, according to whatever metrics we’ve implemented.
Therefore, it is almost always beneficial to train word2vec for as many epochs as
resources allow, or until the downstream task has reached a performance
plateau—in which case, additional training does not yield an increase in the
downstream metric.

We can see this effect in the figure below, where we plot word2vec’s training
loss in grey and the Recall@10 score on the validation set in blue (since there is
no validation loss in this case) as a function of training epochs. The Recall@10
score is completely decoupled from word2vec’s training loss and steadily
increases over the course of training. By the end of the 100 epochs, this score
has relatively flattened. We tried training for longer (200 epochs), but this didn’t
significantly increase performance.



Of course, it’s still better to determine the best set of hyperparameters for the
specific dataset you are working with; however, these results demonstrate that
you can get far by simply increasing the number of training epochs. We estimate
that the increase in training epochs accounts for up to 58% of the performance
gains for our best word2vec model (compared to the model trained on default
values for only 5 epochs). This suggests that having ideal hyperparameters
accounts for roughly 42% of the performance gains, which has performance
implications of another kind: computational. Let’s look at some of the
challenges of this method for session-based recommendations, starting with the
computational cost.

Challenges
While using word2vec to learn product embeddings for recommendations is
relatively new and somewhat intuitive, it does come with some challenges.

Figure 17: Recall@10 score on the validation set as a function of

epochs, where the dark line indicates the mean over 5 models trained on

the same (best) hyperparameters, and the light shading is 1 std

deviation.



Some of these challenges we faced directly in our experiment, but others are
likely to crop up when using this approach for different types of datasets or use
cases.

Computational Resources
Using word2vec for product embeddings in a recommendation system can be a
viable approach, but for some datasets, identifying the right hyperparameters to
optimize those embeddings is a must. The problem is that hyperparameter
searches are expensive, requiring one to train hundreds, or even thousands, of

model configurations. While the Gensim library[16] is one of the fastest for
training vector embeddings, it only supports CPU. GPU support is possible with a

Keras wrapper, but benchmarks[17] indicate it is actually slower than the original

Gensim CPU version.[18]

However, there are some strategies to mitigate this challenge:

1. Perform hyperparameter optimization on a subsample of the original

dataset. Although we did not perform this experiment, research[19] has
indicated that, for certain datasets, performing hyperparameter
optimization on a 10% subsample is sufficient to find good
hyperparameters at a fraction of the computational cost.

2. Perform a smarter hyperparameter sweep using one of many
hyperparameter optimization search algorithms. The idea here is that,
overall, fewer trials are needed to find the optimal hyperparameters, thus
saving CPU hours.

Metrics
Recall@K and MRR@K are two common metrics for NEP, and provide a way to
assess various models on equal footing. However, they don’t directly measure
what a business might truly wish to optimize: revenue, watch/listen time, etc.

Recall@K This metric is most practical for settings in which the absolute order
does not matter (e.g., the recommendations are not highlighted and they are all
shown on the screen at the same time). This might be the case for a website that
displays ten or twenty recommendations at once, allowing the user to explore
options. However, it’s a harsh metric because it doesn’t assign a score to other
items that might be nearly identical to the ground truth item. Recall@K simply



assigns a 1 or a 0 depending on whether the user’s true choice was included in
the list of recommendations. It does not score any number of similar products in
that recommendation list that, in reality, might have been equally acceptable to
the user.

MRR@K Mean reciprocal rank is a better choice for applications in which the
order of the recommendation matters (e.g., lower ranked recommendations are
only shown once the user scrolls to the bottom of the page). In this case, having
a higher MRR is crucial, indicating the best recommendations are near the top.
Again, this metric only assigns a score if the user’s true choice was included in
the list of recommendations and does not give “partial credit” to similar items.

While both of these metrics share similarities with real-world use cases, neither
of them directly correlates with increased revenue, watch/listen time, or other
real-world KPIs. Furthermore, these metrics do not take into account the quality
of the resulting recommendations (more on this in Online evaluation). To assess
these real-world outcomes, any session-based recommender must be subjected
to live, online A/B testing.

The cold start problem
The cold start problem afflicts nearly all recommendation systems, and usually
comes in two flavors: new users and new products. For session-based
recommendation systems, new users are typically not a problem because these
systems do not rely explicitly on user characteristics. As long as a website has
some historical user base, that data can be used to generate embeddings for
existing products based on how users navigate the site. These embeddings can
then generate reasonable recommendations for new users.

However, new products still present a challenge. These items do not have any
sessions associated with them in the training dataset; hence, there are no
embeddings associated with them, either. A possible solution to this could be to
look at a few similar items (for instance, similar products based on domain, or
similar music style) and then assign an embedding that is the average of the
embedding vectors of the similar items to create an initial vector.

Embeddings and scalability
A general challenge when using word2vec embeddings is that they can be

computationally demanding[20], especially compared to simpler heuristics (such



as co-occurrence-based recommendations). Embedding methods require
substantial amounts of training data to be effective. Also, in order to actually
recommend an item, one needs to compute the closest items (based on cosine
similarity, nearest neighbor, or some other distance metric) to a given item using
the embeddings. This could be challenging to compute in real time. One way to
get around it would be to pre-compute and store the k-closest items to an item
for easy lookup when needed. There are also indications that embedding

methods[21] may not perform as well as purely sequential models, such as
RNNs, although this is likely use-case dependent.



The definition of a session is crucial to building a successful session-based
recommendation system, but this is not always an easy task. Sessions should be
determined based on the structure and type of data collected, as well as the use
case or problem at hand. Will the sessions be determined from online browsing
history, transactions, rated items, or all of the above? How long should a session
be? What determines the session boundary? (For instance, if a user is browsing
items on the web, sessions could be delineated based on user inactivity.) All of
these questions introduce a number of challenges in designing session-based
recommenders. The rest of this section summarizes the challenges associated
with session-based recommendation systems across various session
definitions: length, ordering, anonymous vs. non-anonymous, structure, user
actions captured, etc.

Session-related issues
What is more important: a user’s long-term intent or a short-term intent? To this
end, we need to consider session lengths while defining the problem. Session
lengths can be roughly categorized into three types: long (> 10 interactions),
medium (4-9 interactions) and short (<4 interactions). While more interactions
could provide more contextual information, they may also introduce noise,
leading to poor performance. Similarly, shorter sessions yield only a limited
amount of information and, consequently, less context. Based on empirical

evidence,[22] medium sessions generally are better at capturing enough
contextual information without including too much irrelevant information. This is
especially true for transactional data in the ecommerce industry. Selecting an
appropriate time span for sessions is domain-dependent, and comes with
certain assumptions.

Sessions can also be ordered or unordered, meaning that the user’s interactions
may or may not actually capture when the interaction happens. For instance,
when shopping online, the order in which a user adds items to their cart may not
carry any meaning. Conversely, the sequence of songs listened to may actually
matter, reflecting the mood and interests of the user in real time. Such situations

Overall Considerations



warrant looking into appropriate modeling approaches; in some cases co-
occurrence based approaches might work better than sequence models,
depending on whether the entries are ordered or unordered.

Another big challenge for session-based recommenders is how to effectively
learn from different actions by the user (for instance, how to differentiate
between a user’s browsing activity and their purchase activity). Should the
session contain only the items that were clicked on? Or should the various
actions be combined? If so, how does one model such complex dependencies?

What determines a good
recommendation?
Different recommendation strategies and approaches lead to different
recommendations. Defining “good” recommendations is challenging because
this depends so highly on the use case. For example, simple baselines use pure
co-occurrence between items to generate recommendations, but this might not
help a user discover new or lesser known items that might be of interest to
them. Additionally, an emphasis on popularity can lead to recommendations
that are not diverse.

This is highly relevant in regard to music recommendations. At times, a user may
be in the mood to listen to the “most popular” songs, but at other times they are
looking to discover something new, in which case popularity-based
recommendations are likely not helpful.

Session-based recommenders often tend to make popularity-based
recommendations, and this is particularly true of word2vec, which uses co-
occurrence within a context to learn item embeddings. These tendencies can be
mitigated, in part, by applying popularity or lack-of-diversity penalties to

augment the recommendations towards item discovery.[23] Another option
could be to include a “popularity metric” for evaluating the recommendations.
One could measure an algorithm’s popularity by first normalizing popularity
values of each item in the training set, and then, during evaluation, computing
the popularity by determining the average popularity value of each item that
appears in its top-n recommendation list. (Higher values correspondingly mean

that an algorithm has a tendency to recommend rather popular items.)[24]



Online evaluation
Offline evaluations rarely inform us about the quality of recommendations as
perceived by the users. In one study of e-commerce session-based
recommenders, it was observed that offline evaluation metrics often fall short
because they tend to reward an algorithm when they predict the exact item that
the user clicked or purchased. In real life, though, there are identical products
that could potentially make equally good recommendations. To overcome these
limitations, the authors suggest incorporating human feedback on the
recommendations from offline evaluations before conducting A/B tests.



Recommender systems have become a cornerstone of online life; they help us
navigate an overwhelming amount of information. Being able to predict a user’s
interests based on an online session is a highly relevant problem in practice.
There is not, however, a one-size-fits-all model; each solution will ultimately be
unique to the use case, and care must, as always, be taken in the development
and assessment of the model, in order to provide recommendations that will
help users and businesses alike. Careful development and assessment of any
machine learning model is critical, but it is especially true with recommender
systems in general, and session-based recommenders in particular. The best
approach is to first benchmark several options on offline metrics (such as
Recall@K), and then perform online evaluation (through A/B testing, for
example,) before settling on a given model—as offline metrics typically cannot
be used to properly assess real-world KPIs (like revenue generation or watch
time).

For this report, we experimented with an NLP-based algorithm—word2vec—
which is known for learning low-dimensional word representations that are
contextual in nature. We applied it to an e-commerce dataset containing
historical purchase transactions, to learn the structure induced by both the
user’s behavior and the product’s nature to recommend the next item to be
purchased. While doing so, we learned that hyperparameter choices are data-
and task-dependent, and especially, that they differ from linguistic tasks; what
works for language models does not necessarily work for recommendation
tasks.

That said, our experiments indicate that in addition to specific parameters (like
negative sampling exponent, the number of negative samples, and context
window size), the number of training epochs greatly influences model
performance. We recommend that word2vec be trained for as many epochs as
computational resources allow or until performance on a downstream
recommendation metric have plateaued.

The future is bright for session-based recommender systems. Research
continues to push the boundaries, providing more powerful recommendation

Conclusion



models and more efficient hyperparameter optimization methods. These, in
turn, will pave the way for increasingly useful and powerful recommenders.
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